
Towards symbolic model checking for
multi-agent systems via OBDD’S

Franc0 Raimondi and Alessio Lomuscio

Department of Computer Science
King’s College London

London, UK
{franco, alessio}Bdcs ~ k c l . ac. uk

Abstract. We present an algorithm for model checking temporal-epistemic
properties of multi-agent systems, expressed in the formalism of inter-
preted systems. We first introduce a technique for the translation of
interpreted systems into boolean formulae, and then present a model-
checking algorithm based on this translation. The algorithm is based on
OBDD’S, as they offer a compact and efficient representation for boolean
formulae.

1 Introduction

Theoretical investigations in the area of multi-agent systems (MAS) have tra-
ditionally focused on speci.mtions. Various logics have been explored to give
formal foundations to MAS, particularly for mental attitudes [I] of agents, such
as knowledge, belief, desire, etc. To consider the temporal evolution of these at-
titudes, temporal logics such as CTL and LTL [2] have been included in MAS
formalisms, thereby producing combinations of temporal logic with, for example,
epistemic, doxastic, and deontic logics.

Although it is important to investigate formal tools for specifying MAS, the
problem of verijkation of MAS must also be taken into account to ensure that
systems behave as they are supposed to. Model checking i s a well-established
verification technique for distributed systems specified by means of temporal
logics [3,2]. The problem of model checking is to verify whether a logical for-
mula p expressing a certain required property is true in a model M representing
the system, that is establishing whether or not M p cp. This approach can also
be applied to MAS, where in this case M is a semantical model representing
the evolutions of the MAS, and ‘p is a formula expressing temporal-intentional
properties of the agents. Recent work along these lines includes (41, in which
Wooldridge et al. present the MABLE language for the specification of MAS. In
this work, modalities are translated as nested data siruckzes (iii the spF? ef is]).
Bordini et al. [6] use a modified version of the AgentSpeak(L) language [7] to
specify agents and to exploit existing model checkers. For verification purposes,
both the works of Wooldridge et al. and of Bordini et al. translate the MAS
specification into a SPIN specification [8] to perform the verification. The EeikS

of van der Meyden and Shilov [9], and van der Meyden and Su [lo] , are concerned
with verification of interpreted systems. They consider the verification of a par-
ticular class of interpreted systems, namely the class of synchronous distributed
systems with perfect recall. An algorithm for model checking is introduced in the
first paper using automata, and [lo] suggests the use of OBDD’S for this approach.

The aim of this paper is to present an algorithm for model checking epistemic
and temporal properties of interpreted systems [Ill. This differs from previous
work by treating all the modalities explicitly in the verification process. We
focus on temporal-epistemic model checking because the verification of epistemic
properties (and their temporal evolution) is crucial in many scenarios, including
communication protocols and security protocols.

Interpreted systems are a formalism for representing epistemic properties
of MAS and their evolution with time. The algorithm that we present does
not involve the translation into existing model checkers, it is fully symbolic,
and it is based on boolean functions. Boolean functions can be represented and
manipulated efficiently by means of OBDD’S, as it has been shown for CTL model
checking [12].

The rest of the paper is organised as follows: in Section 2 we briefly review
OBDD’s-based model checking and the formalism of interpreted systems. In Sec-
tion 3.1 we present the translation of interpreted systems into boolean formulae,
while in Section 3.2 we introduce an algorithm based on this translation. We
provide a proof of the correctness of the algorithm in Section 3.3. We conclude
in Section 4.

*

2 Preliminaries

2.1

Given a model M and a formula cp in some logic, the problem of model checkzng
involves establishing whether or not M + cp holds. Tools have been built to
perform this task automatically, where M is a model of some temporal logic [3,
2,8]. SMV [la] and SPIN [8] are two well-known model checkers; in these tools
the model is given indirectly by means of a program P. It is not efficient to
build explicitly the model M represented by P , because M has a size which
is exponential in the number of variables of P (this fact is known as the state
explosion problem). Instead, various techniques have been developed to perform
symbolic model checking, which is the problem of model checking where the model
M is not described or computed in extension. Techniques for symbolic model
checking mostly use either automata [8], or OBDD’S [13] for the representation
of all the parameters needed by the algorithms. For the purpose of this paper,
we will only consider symbolic model checking of the temporal logic CTL using
OBDD’S [14].

CTL is a logic used to reason about the evolution of a system represented as a
brunching path. Given a countable set of propositional variables P = { p , q, . . .},
CTL formulae are defined as follows:

cp::=P I -Y I vvcp I EXcp I EGcp I E(cpUcp)

CTL model checking and OBDD’S

where the temporal operator X means in the next state, G means globally and U
means until. Each temporal operator is prefixed by the existential quantser E.
Thus, for example, EG(p) means that “there exists a path in which p is globdy
true”. Traditionally, other operators are added to the syntax of CTL, namely
AX, EF, AF, AG, AU (notice the “universal” quantifier A over paths, dual of
E). These operators can be derived from the operators introduced here [2]. The
semantics of CTL is given via a model M = (S, R, V , I) where S = {so, SI,. . .}
is a set of states, R C S x S is a binary relation, V : P 4 ZS is an evaluation
function, and I 5 S is a set of initial states. A path n is a sequence of states
7r = {so, SI, - . .} such that so E I and Vi, (sa , sl+l) E R. A state s, in a path n is
denoted with na. Satisfaction in a state is defined inductively as follows:

S l = P 8 s E V k) ,
s /= EXp iff there exists a path T such that nTT, = s and nz+l
s + EGp if€ there exists a path n such that n, = s and nl+J

s E(pU+) if€ there exists a path x such that n, = s and a k 2 0 such

OBDD’s (Ordered Binary Decision Diagrams) are an efficient representation
for the manipulation of boolean functions. As an example, consider the boolean
function a A (b V c). The truth table of this function would be 8 lines long. Equiv-
alently, one can evaluate the truth value of this function by representing the
function as a directed graph, as exemplified on the left-hand side of Figure 1. As
it is clear from the picture, under certain assumptions, this graph can be simpli-
fied into the graph pictured on the right-hand side of Figure 1. This “reduced”
representation is called the OBDD of the boolean function.

cp,
p

for all 2 0.

that xt+k $ and T , + ~ p for all 0 5 j < k.

a a

b b

c c A A n A
0 0 ‘ 0 0 0 1 1 I 0 1

Fig. 1. OBDD representation for a A (b V c).

Besides offering a compact representation of boolean functions, OBDD’S of
different functions can be composs3 efEcizzt!y: i~ [I-?! algorithms are provided
for the manipulation and composition of OBDD’S.

The idea of CTL model checking using OBDD’S is to represent states of the
model and relations by means of boolean formulae. A CTL formula is identified
with a set of states, i.e. the states of the model satisfyiig the forEda. As set

of states can be represented as a boolean formula, each CTL formula can be
characterised by a boolean formula. Thus, the problem of model checking for
CTL is reduced to the construction of boolean formulae. This is achieved by
composing OBDD'S, or by computing fix-points of operators on OBDD'S; we refer
to [2] for the details. By means of this approach large systems have been checked,
including hardware and software components.

2.2 Interpreted Systems

An interpreted system is a semantic structure representing the temporal evolu-
tion of a system of agents. Each agent i (i = (1,. . . , n}) is characterised by a set
of local states L, and by a set of actions Act, that may be performed. Actions
are performed in compliance with a protocol P, : La -+ 2Act*; notice that this
definition allows for non-determinism. A tuple g = (1 1 , . . . , In) E L1 x . . . , Ln,
where 1, E L, for each i, is called a global state and gives a snapshot of the SYS-
tem. Given a set I of znitzal global states, the evolution of the system is described
by n evolution functions': t, : L1 x . . . x L, x Actl x . . . x Act, -+ L, In this
formalism the environment in which agents "live" is usually modeled by means
of a special agent E ; we refer to [ll] for more details.

The set I , t, and the protocols P, generate a set of runs. Formally, a run 7-r

is a sequence of global states 7r = (g o , g l , . . ,) such that go E I and, for each pair
(g3 , g3+l) E T , there exists a set of actions a enabled by the protocols such that
t(g,,a) = g3+1. G C_ (L1 x . . . x Ln) denotes the set of reachable global states.

Given a set of agents A = {I, . . . , n} with corresponding local states, pro-
tocols, and transition functions, a countable set of propositional variables P =
{ p , 4, . . .}, and a valuation function for the atoms V : P -+ 2G, an znterpreted
system is a tuple IS = (G, I , 17, -1,. . . , N,, V) . In the above G is the finite set
of reachable global states for the system, I C G is the set of initial states, and
17 is the set of possible runs in the system. The binary relation N a l z E A, is
defined by g N, g' iff Z,(g) = l , (g ')) i.e. if the local state of agent i is the same
in g and in 9'. Some issues arise with respect to the generation of the reachable
st&tes in the system given a set of protocols and transition relations; since they
do not influence this paper we do not report them here.

Interpreted systems semantics can be used to interpret formulae of a temporal
language enriched with epistemic operators [ll]. Here we assume a temporal tree
structure to interpret CTLK formulae [15]. The syntax of CTLK is defined in
terms of a countable set of propositional variables P = { p , 4 , . . .} and using the
following modalities:

' P : : = P I "PI C P V V 1 E X P I EGP I E(PUP) I K ~ C P

The modalities A X , EF, AF, AG, AU are derived in the standard way. Further,
given a set of agents r, two group modalities can be introduced: Er'p and
Cr'p denote, respectively, that every agent in the group knows 'p, and that 'p is
common knowledge in the group (see [ll] for details).

This definition is equivalent to the definition of a single evolution function t as in [Ill.

Given an interpreted system IS, a global state g, and a formula p, the se-
mantics of CTLK is defined as follows:

IS,g I= P
I S , g I = - f J i f f g F P ,
IS,gI=tP1v'p2 i f f !J+Vl o r g k p 2 ,

iffg E W P) ,

IS,g I= EXp iE there exists a run r such that

IS, g /= EGp iff there exists a run r such that

IS,g /= E(pU$) iff there exists a run r such that

7ri = g for some i, and rt+l /= p,

n, = g for some i, and rj /= p for all j 2 z.

= g for some i, and a k 2 0 such that ri+i+k + $
and rj + 'p for all i 5 j < i f I C ,

iff Vg' E G, g -i g' implies g' + p
BVg' E G, g -; g' implies g' /= p
iff Qg' E G, g -: g' implies g' + 'p

I s , g + Kip
IS,g + Erp
IS,g + Cr'p
In the definition above, rj denotes.the global state at place j in run r.

Other temporal modalities can be derived, namely AX, EF, AF, AG, AU. We
write IS /= p if, for every global state g E G, IS, g /= cp. We refer to [ll, 151 for
more details.

3 A model checking algorithm for CTLK

The main idea of this paper is t o use algorithms based on OBDD'S to verify tem-
poral and epistemic properties of multi-agent systems, in the spirit of traditional
model checking for temporal logics. To this end, it is necessary to encode all the
parameters needed by the algorithms by means of boolean functions, and then
to represent boolean functions by means of OBDD'S. As this last step can be
performed automatically using software libraries that are widely available, in
this paper we introduce only the translation of interpreted systems into boolean
formulae (Section 3.1). In Section 3.2 we present an algorithm based on this
translation for the verification of CTLK formulae.

3.1 Translating an interpreted system into boolean formulae

The local states of an agent can be encoded by means of boolean variables (a
boolean variable is a variable that can assme just one of the two values 0 or
1). The number of boolean variables needed for each agent is nv(i) = rZog$ill.
Thus, a global state can be identified by means of N = nv(i) boolean variables:

g = (VI,. . . , v ~) . The evaluation function V associates a set of global states
to each propositional atom, and so it can be seen as a boolean function. The
protocols, too, can be expressed as booiean h c t i o a (a c t i ~ i ~ ~ bckg represented
with boolean variables (ul, . . . , UM) similarly to global states).

The definition of ti in Section 2.2 can be seen as specifying a list of conditions
C L , ~ , . . , c+,k under which agent i changes the value of its local state. Each Ci,j
relates conditions on global state and actions with the value of "next" local state

i

for i.
ti = ci,l v . . . v &,k

We assume that the last condition Ci,k of ti prescribes that, if none of the con-
ditions &,j(j < k) is true, then the local state for i does not change. This
assumption is key to keep compact the description of an interpreted system, as
in this way only the conditions that are actually causing a change need to be
listed.

The algorithm presented in Section 3.2 requires the definition of a boolean
function Rt (g ,g ’) representing a temporal relation between g and 9’. R t (g , 9’)
can be obtained from the evolution function ti as follows. First, we introduce a
global evolution function t:

t = A t i = A (&,1 v . ‘ ’ v Ci ,k i)

i€{ l (...) n} i€{l, ..., n}

Notice that t is a boolean function involving two global states and a joint action
a = (01, . .’. , a ~) . To abstract from the joint action and obtain a boolean function
relating two global states only, we can define Rt as follows:

Rt (g ,g ’) iff 3a E Act : t (g , a , 9‘) is true and each local action ai E a is enabled by
the protocol of agent i in the local state l i (g) .
The quantification over actions above can be translated into a propositional

formula using a disjunction (see [12,3] for a similar approach to boolean quan-
tification) :

R t (g , 9’) = v l (t (g , a, g’) A P (g , .)I
aEAct

where P (g , a) is a boolean formula imposing that the joint action a must be con-
sistent with the agents’ protocols in global state g . Rt gives the desired boolean
relation between global states.

3.2 The algorithm

In this section we present the algorithm SATCTLK to compute the set of global
states in which a CTLK formula ‘p holds, denoted with [[‘p]]. The following are
the parameters heeded by the algorithm:

- the boolean variables (211,. . . , WN) and (a l , . . . , a ~) to encode global states
and joint actions;

- the boolean functions Pi(v1,. . . ,VN, al, . . . , U M) to encode the protocols of
the agents;

- the function V (p) returning the set of global states in which the atomic
proposition p holds. We assume that the global states are returned encoded
as a boolean function of (V I , . . . ,vN);

- the set of initial states I , encoded as a boolean function;
- the set of reachable states G. This can be computed as the &-point of the

operator T = (I(g) V 3g’(Rt(g’ , g) A Q (g /)) where I (g) is true if g is an initial
state and Q denotes a set of global states. The fix-point of T can be computed
by iterating r(0) by standard procedure (see [12]);

- the boolean function Rt to encode the temporal transitions;
- n boolean functions R, to encode the accessibility relations

tions are easily defined using equivalence on local states of G).
- the boolean function Rg to encode ;$, defined by R$ = A %.

(these func-

i E r

The algorithm is as follows:

In the algorithm above, EXCTLK, EGCTLK, EUCTLK are the standard
procedures for CTL model checking [2] in which the temporal relation is Rt
and, instead of temporal states, globd states are considered. The procedures
K c T L I ((~ , i) and ECTLK((P, r) and CCTLK(P, T) are presented below.

KCTLK((P, i) {
X = ~MCTLK(-V);
Y = {g E GIK,(g,g’) and g’ E X}
return 7%

1

The procedure C C T L K (~ , I‘) is based on the equivalence [ll]

which implies that [[Crcp]] is the fkpoint of the (monotonic) operator T(&) =
[[Er(pA (&))]I. Hence, [[Cpp]] can be obtained by iterating 7 (G) .

Notice that all the parameters can be encoded as OBDD’S. Moreover, all the
operations inside the algorithms can be performed on OBDD’S as presented in [13].

To check that a formula holds in a model, it is enough to check whether or
not the result of SATCTLK i s equivalent to the set of reachable states.

3.3 Correctness of the algori thm

The algorithm presented in Section 3.2 is sound and complete.

Theorem 1. For every CTLK formula cp, IS cp ~ ~ S A T C T L K ((P) G. (i e .
iff the set of states computed by the algorithm as the set of reachable states G).

Proof. (=>): by induction on the structure of cp. We consider here the epistemic
operators (a proof for the temporal operators can be found in [a]) . Let cp = Ki($J)
and let IS ,g Ki($J). This means that IS,g’ + II, for all g’ E G s.t. g -% g’.
By the induction step, g’ E [[$I]; also we have Ri(g, 9’) by definition of Ri. This
implies that g E [[Ki($)]] , i.e. g E [[p]]. The proof for Er is similar. The proof of
correctness for common knowledge follows from the correctness of the fix-point
characterisation of Cr[11].

0 (<=): straightforward, as the induction steps above are symmetrical.

4 Conclusion

Temporal logic model checking using OBDD’S 1121 is one of the most successful
techniques for the verification of distributed systems. In the last decade, this
methodology has been used for the verification of both software and hardware
components.

In this paper we have presented an algorithm for the verification of temporal-
epistemic properties based on the manipulation of boolean functions. The method-
ology presented here encodes directly a MAS (specified in the formalism of in-
terpreted systems) by means of boolean formulae; then, the algorithm allows for
the (fully symbolic) verification of temporal-epistemic properties. Moreover, the
algorithm allows for the verification of two group modalities (ET and Cr) and
is not restricted to a particular class of interpreted systems, nor to a particular
class of formulae. We are currently implementing the algorithm and in the future
we aim at testing epistemic and temporal properties of various scenarios from
the MAS literature. This will help in evaluating the efficiency of the algorithm.

References

1. McCarthy, J.: Ascribing mental qualities to machines. In Rkgle, M., ed.: Phile
sophical Perspectives in Artificial Intelligence. Humanities Press, Atlantic High-
lands, New Jersey (1979) 161-195

2. Huth, M.R.A,., Ryan, M.D.: Logic in Computer Science: Modelling and Reasoning
about Systems. Cambridge University Press, Cambridge, England (2000)

3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press,
Cambridge, Massachusetts (1999)

4. Wooldridge, M., Fisher, M., Huget, M.P., Parsons, S.: Model checking multi-
agent systems with MABLE. In Gini, M., Ishida, T., Casteifranchi, C., Johnson,
W.L., eds.: Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS’02), ACM Press (2002) 952-959

5. Benerecetti, M., Giunchiglia, F., Serafhi, L.: Model checking multiagent systems.
Journal of Logic and Computation 8 (1998) 401-423

6. Bordini, R.H., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking AgentS-
peak. In: Proceedings of the Second International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS’03). (2003)

7. h, AS.: AgentSpeak(L): BDI agents speak out in a logical computable language.
Lecture Notes in Computer Science 1038 (1996) 42-58

8. Holzmann, G.J.: The model checker spin. IEEE transaction on software engineering
23 (1997)

9. van der Meyden, R., Shilov, N.V.: Model checking knowledge and time in systems
with perfect recall. FSTTCS: Foundations of Software Technology and Theoretical
Computer Science 19 (1999)

10. van der Meyden, R., Su, K.: Symbolic model checking the knowledge of the dining
cryptographers. Submitted (2002)

11. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
The MIT Press, Cambridge, Massachusetts (1995)

12. McMillan, K.: Symbolic model checking: An approach to the state explosion prob-
lem. Kluwer Academic Publishers (1993)

13. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
llansaction on Computers (1986) 677491

14. Bur&, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic
model checking: lo2’ states and beyond. Information and Computation 98 (1992)

15. Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems
142-170

via model checking. F’undamenta Informaticae 55 (2003) 167-185

